CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Thermoelectrics of Interacting Nanosystems -- Exploiting Superselection Instead of Time-Reversal Symmetry

Jens Schulenborg (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; Angelo Di Marco (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; Joren Vanherck ; Maarten Wegewijs ; Janine Splettstoesser (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Entropy (1099-4300). Vol. 19 (2017), 12,
[Artikel, refereegranskad vetenskaplig]

Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager’s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems—deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems—provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.

Nyckelord: thermoelectrics; transport through quantum dots; strong Coulomb interaction; fermion parity



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-12-06. Senast ändrad 2017-12-06.
CPL Pubid: 253603

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)