CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical homogenization of mesoscopic loss in poroelastic media

Ralf Jänicke (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Beatriz Quintal ; Holger Steeb
European Journal of Mechanics. A, Solids (0997-7538). Vol. 49 (2015), p. 382-395.
[Artikel, refereegranskad vetenskaplig]

This contribution deals with the numerical homogenization of mesoscopic flow phenomena in fluid-saturated poroelastic media. Under compression, mesoscopic heterogeneities induce pore pressure gradients and consequently pressure diffusion of the pore fluid. Since this process takes place on a scale much smaller than the observable level, the dissipation mechanism is considered as a local phenomenon. The heterogeneous poroelastic medium is substituted by an overall homogeneous Cauchy medium accounting for viscoelastic properties. Applying volume averaging techniques we derive a consistent upscaling procedure based on an appropriate extension of the Hill-Mandel lemma. We introduce various sets of boundary conditions for the poroelastic problem and discuss the relation between size of the SVEm (Statistical Volume Element) and maximum diffusion length. Numerical examples for two- and three-dimensional problems are given.

Nyckelord: Numerical homogenization, Poroelasticity, Mesoscopic loss

Denna post skapades 2017-11-23.
CPL Pubid: 253348


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)



Chalmers infrastruktur