CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Sharp endpoint estimates for some operators associated with the Laplacian with drift in Euclidean space.

Hong-Quan Li ; Peter Sjögren (Institutionen för matematiska vetenskaper)

Let $v \ne 0$ be a vector in $\R^n$. Consider the Laplacian on $\R^n$ with drift $\Delta_{v} = \Delta + 2v\cdot \nabla$ and the measure $d\mu(x) = e^{2 \langle v, x \rangle} dx$, with respect to which $\Delta_{v}$ is self-adjoint. %Let $d$ and $\nabla$ denote the Euclidean distance and the gradient operator on $\R^n$. Consider the space $(\R^n, d,d\mu)$, which has the property of exponential volume growth. This measure has exponential growth with respect to the Euclidean distance. We study weak type $(1, 1)$ and other sharp endpoint estimates for the Riesz transforms of any order, and also for the vertical and horizontal Littlewood-Paley-Stein functions associated with the heat and the Poisson semigroups.

Nyckelord: Riesz transform; Littlewood-Paley-Stein operators; Heat semigroup; Laplacian with drift

Denna post skapades 2017-11-20.
CPL Pubid: 253257


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur