CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations

T. P. Rossi ; Mikael Kuisma (Institutionen för fysik, Material- och ytteori (Chalmers)) ; M. J. Puska ; R. M. Nieminen ; Paul Erhart (Institutionen för fysik, Material- och ytteori (Chalmers))
Journal of Chemical Theory and Computation (1549-9618). Vol. 13 (2017), 10, p. 4779-4790.
[Artikel, refereegranskad vetenskaplig]

Electronic excitations can be efficiently analyzed in terms of the underlying Kohn-Sham (KS) electron-hole transitions. While such a decomposition is readily available in the linear-response time-dependent density-functional theory (TDDFT) approaches based on the Casida equations, a comparable analysis is less commonly conducted within the real-time-propagation TDDFT (RT-TDDFT). To improve this situation, we present here an implementation of a KS decomposition tool within the local-basis-set RT-TDDFT code in the free GPAW package. Our implementation is based on postprocessing of data that is readily available during time propagation, which is important for retaining the efficiency of the underlying RT-TDDFT to large systems. After benchmarking our implementation on small benzene derivatives by explicitly reconstructing the Casida eigenvectors from RT-TDDFT, we demonstrate the performance of the method by analyzing the plasmon resonances of icosahedral silver nanoparticles up to Ag-561. The method provides a clear description of the splitting of the plasmon in small nanoparticles due to individual single-electron transitions as well as the formation of a distinct d-electron-screened plasmon resonance in larger nanoparticles.



Denna post skapades 2017-11-10.
CPL Pubid: 253069

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Material- och ytteori (Chalmers)

Ämnesområden

Fysikalisk kemi

Chalmers infrastruktur