CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Human fall detection using segment-level CNN features and sparse dictionary learning

Chenjie Ge (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling) ; Jie Yang
IEEE International workshop on Machine learning for signal processing (MLSP 2017) p. 6. (2017)
[Konferensbidrag, refereegranskat]

This paper addresses issues in human fall detection from videos. Unlike using handcrafted features in the conventional machine learning, we extract features from Convolutional Neural Networks (CNNs) for human fall detection. Similar to many existing work using two stream inputs, we use a spatial CNN stream with raw image difference and a temporal CNN stream with optical flow as the inputs of CNN. Different from conventional two stream action recognition work, we exploit sparse representation with residual-based pooling on the CNN extracted features, for obtaining more discriminative feature codes. For characterizing the sequential information in video activity, we use the code vector from long-range dynamic feature representation by concatenating codes in segment-levels as the input to a SVM classifier. Experiments have been conducted on two public video databases for fall detection. Comparisons with six existing methods show the effectiveness of the proposed method.

Nyckelord: Deep learning, Convolutional Network, human fall detection, automatic feature learning, sparse dictionary learning, residual-based pooling, E-healthcare, assisted living.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-11-07.
CPL Pubid: 252961


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Människa-datorinteraktion (interaktionsdesign)
Datorseende och robotik (autonoma system)

Chalmers infrastruktur