CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

9.0% power conversion efficiency from ternary all-polymer solar cells

Zhaojun Li (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Xiaofeng Xu (Institutionen för kemi och kemiteknik, Polymerteknologi) ; W. Zhang ; X. Meng ; Z. Genene ; W. Ma ; W. Mammo ; A. Yartsev ; M.R. Andersson ; R.A.J. Janssen ; Ergang Wang (Institutionen för kemi och kemiteknik, Polymerteknologi)
Energy and Environmental Science (1754-5692). Vol. 10 (2017), 10, p. 2212-2221.
[Artikel, refereegranskad vetenskaplig]

Integration of a third component into a single-junction polymer solar cell (PSC) is regarded as an attractive strategy to enhance the performance of PSCs. Although binary all-polymer solar cells (all-PSCs) have recently emerged with compelling power conversion efficiencies (PCEs), the PCEs of ternary all-PSCs still lag behind those of the state-of-the-art binary all-PSCs, and the advantages of ternary systems are not fully exploited. In this work, we realize high-performance ternary all-PSCs with record-breaking PCEs of 9% and high fill factors (FF) of over 0.7 for both conventional and inverted devices. The improved photovoltaic performance benefits from the synergistic effects of extended absorption, more efficient charge generation, optimal polymer orientations and suppressed recombination losses compared to the binary all-PSCs, as evidenced by a set of experimental techniques. The results provide new insights for developing high-performance ternary all-PSCs by choosing appropriate donor and acceptor polymers to overcome limitations in absorption, by affording good miscibility, and by benefiting from charge and energy transfer mechanisms for efficient charge generation.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-10-27. Senast ändrad 2017-11-07.
CPL Pubid: 252790

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)




Projekt

Denna publikation är ett resultat av följande projekt:


SUstainable Novel FLexible Organic Watts Efficiently Reliable (SUNFLOWER) (EC/FP7/287594)