CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Approximate Bayesian Computation by Subset Simulation for model selection in dynamical systems

Majid Khorsand Vakilzadeh (Institutionen för tillämpad mekanik) ; J.L. Beck ; Thomas Abrahamsson (Institutionen för tillämpad mekanik, Dynamik)
Procedia Engineering - 10th International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, 10-13 September 2017 Vol. 199 (2017), p. 1056-1061.
[Konferensbidrag, refereegranskat]

Approximate Bayesian Computation (ABC) methods are originally conceived to expand the horizon of Bayesian inference methods to the range of models for which only forward simulation is available. However, there are well-known limitations of the ABC approach to the Bayesian model selection problem, mainly due to lack of a sufficient summary statistics that work across models. In this paper, we show that formulating the standard ABC posterior distribution as the exact posterior PDF for a hierarchical state-space model class allows us to independently estimate the evidence for each alternative candidate model. We also show that the model evidence is a simple by-product of the ABC-SubSim algorithm. The validity of the proposed approach to ABC model selection is illustrated using simulated data from a three-story shear building with Masing hysteresis.

Nyckelord: Approximate Bayesian Computation , Bayesian model selection , Masing hysteretic models , Subset Simulation

Denna post skapades 2017-10-25. Senast ändrad 2017-10-25.
CPL Pubid: 252760


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik (1900-2017)
Institutionen för tillämpad mekanik, Dynamik (1900-2017)


Sannolikhetsteori och statistik

Chalmers infrastruktur