CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reduced synthesis in harmonic analysis and compact synthesis in operator theory

V. S. Shulman ; I. G. Todorov ; Lyudmila Turowska (Institutionen för matematiska vetenskaper, Analys och sannolikhetsteori)
Functional analysis and its applications (0016-2663). Vol. 51 (2017), 3, p. 240-243.
[Artikel, refereegranskad vetenskaplig]

The notion of reduced synthesis in the context of harmonic analysis on general locally compact groups is introduced; in the classical situation of commutative groups, this notion means that a function f in the Fourier algebra is annihilated by any pseudofunction supported on f (-1)(0). A relationship between reduced synthesis and compact synthesis (i.e., the possibility of approximating compact operators by pseudointegral ones without increasing the support) is determined, which makes it possible to obtain new results both in operator theory and in harmonic analysis. Applications to the theory of linear operator equations are also given.

Nyckelord: locally compact group, reduced C*-algebra of a locally compact group, Fourier algebra, compact operator, masa-bimodule, linear operator equation

Denna post skapades 2017-10-18.
CPL Pubid: 252600


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Analys och sannolikhetsteoriInstitutionen för matematiska vetenskaper, Analys och sannolikhetsteori (GU)



Chalmers infrastruktur