CPL - Chalmers Publication Library

# A three-dimensional anisotropic point process characterization for pharmaceutical coatings

Henrike Häbel (Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik ; SuMo Biomaterials) ; Tuomas Rajala ; M. Marucci ; C. Boissier ; K. Schladitz ; C. Redenbach ; Aila Särkkä (Institutionen för matematiska vetenskaper ; SuMo Biomaterials)
Spatial Statistics (2211-6753). (2017)

© 2017 Elsevier B.V. Spatial characterization and modeling of the structure of a material may provide valuable knowledge on its properties and function. Especially, for a drug formulation coated with a polymer film, understanding the relationship between pore structure and drug release properties is important to optimize the coating film design. Here, we use methods from image analysis and spatial statistics to characterize and model the pore structure in pharmaceutical coatings. More precisely, we use and develop point process theory to characterize the branching structure of a polymer blended film with data from confocal laser scanning microscopy. Point patterns, extracted by identifying branching points of pore channels, are both inhomogeneous and anisotropic. Therefore, we introduce a directional version of the inhomogeneous K-function to study the anisotropy and then suggest two alternative ways to model the anisotropic three-dimensional structure. First, we apply a linear transformation to the data such that it appears isotropic and subsequently fit isotropic inhomogeneous Strauss or Lennard-Jones models to the transformed pattern. Second, we include the anisotropy directly in a Lennard-Jones and a more flexible step-function model with anisotropic pair-potential functions. The methods presented will be useful for anisotropic inhomogeneous point patterns in general and for characterizing porous material in particular.

Nyckelord: Inhomogeneity , K-function , Lennard-Jones pair-potential function , Pairwise Gibbs process , Porous material

### Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden

CPL Pubid: 252427

# Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

# Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Tillämpad matematik och statistikInstitutionen för matematiska vetenskaper, Tillämpad matematik och statistik (GU)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)