CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Convexity of the extended K-energy and the large time behavior of the weak Calabi flow

Robert Berman (Institutionen för matematiska vetenskaper, Algebra och geometri) ; T. Darvas ; Hoang Chinh Lu (Institutionen för matematiska vetenskaper)
Geometry and Topology (1465-3060). Vol. 21 (2017), 5, p. 2945-2988.
[Artikel, refereegranskad vetenskaplig]

Let (X, omega) be a compact connected Kahler manifold and denote by (epsilon(p), d(p)) the metric completion of the space of Kahler potentials H-omega with respect to the L-p - type path length metric d(p). First, we show that the natural analytic extension of the (twisted) Mabuchi K-energy to epsilon(p) is a d(p)-lsc functional that is convex along finite-energy geodesics. Second, following the program of J Streets, we use this to study the asymptotics of the weak (twisted) Calabi flow inside the CAT(0) metric space (epsilon(2), d(2)). This flow exists for all times and coincides with the usual smooth (twisted) Calabi flow whenever the latter exists. We show that the weak (twisted) Calabi flow either diverges with respect to the d(2)-metric or it d(1)-converges to some minimizer of the K-energy inside epsilon(2). This gives the first concrete result about the long-time convergence of this flow on general Kahler manifolds, partially confirming a conjecture of Donaldson. We investigate the possibility of constructing destabilizing geodesic rays asymptotic to diverging weak (twisted) Calabi trajectories, and give a result in the case when the twisting form is Kahler. Finally, when a cscK metric exists in H-omega, our results imply that the weak Calabi flow d(1)-converges to such a metric.



Denna post skapades 2017-10-10. Senast ändrad 2017-10-10.
CPL Pubid: 252419

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Algebra och geometriInstitutionen för matematiska vetenskaper, Algebra och geometri (GU)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur