CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration

Marco Agostini (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Du Hyun Lim (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Matthew Sadd (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Chiara Fasciani ; Maria Assunta Navarra ; Stefania Panero ; Sergio Brutti ; Aleksandar Matic (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Bruno Scrosati
ChemSusChem (1864-5631). Vol. 10 (2017), 17, p. 3490-3496.
[Artikel, refereegranskad vetenskaplig]

Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium–sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g?1) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur–carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.

Nyckelord: batteries; energy storage; gel polymer electrolytes; raman spectroscopy; sulfur



Denna post skapades 2017-10-04. Senast ändrad 2017-10-05.
CPL Pubid: 252336

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Kondenserade materiens fysik (Chalmers)

Ämnesområden

Energisystem

Chalmers infrastruktur