CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical model reduction with error control in computational homogenization of transient heat flow

Emil Aggestam (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Ekre (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 326 (2017), p. 193-222.
[Artikel, refereegranskad vetenskaplig]

Numerical Model Reduction (NMR) is exploited for solving the finite element problem on a Representative Volume Element (RVE) that arises from the computational homogenization of a model problem of transient heat flow. Since the problem is linear, an orthogonal basis is obtained via the classical method of spectral decomposition. A symmetrized version of the space–time variational format is adopted for estimating the error from the model reduction in (i) energy norm and in (ii) given Quantities of Interest. This technique, which was recently developed in the context of the (non-selfadjoint) stationary diffusion–convection problem, is novel in the present context of NMR. By considering the discrete, unreduced, model as exact, we are able to obtain guaranteed bounds on the error while using only the reduced basis and with minor computational effort. The performance of the error estimates is demonstrated via numerical results, where the subscale is modeled in both one and three spatial dimensions.

Nyckelord: Computational homogenization; Error control; Model reduction; Transient

Denna post skapades 2017-10-04. Senast ändrad 2017-11-29.
CPL Pubid: 252299


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Teknisk mekanik

Chalmers infrastruktur