CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the optimal regularity of weak geodesics in the space of metrics on a polarized manifold

Robert Berman (Institutionen för matematiska vetenskaper, Algebra och geometri)
Analysis Meets Geometry (22970215). 9,78332E+12, p. 111-120. (2017)

Let (X,L) be a polarized compact manifold, i.e., L is an ample line bundle over X and denote by ? the infinite-dimensional space of all positively curved Hermitian metrics on L equipped with the Mabuchi metric. In this short note we show, using Bedford–Taylor type envelope techniques developed in the authors previous work [3], that Chen’s weak geodesic connecting any two elements in ? are C1,1-smooth, i.e., the real Hessian is bounded, for any fixed time t, thus improving the original bound on the Laplacians due to Chen. This also gives a partial generalization of Blocki’s refinement of Chen’s regularity result. More generally, a regularity result for complex Monge–Ampère equations over X × D, for D a pseudoconvex domain in ?n is given.

Denna post skapades 2017-10-04.
CPL Pubid: 252234


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Algebra och geometriInstitutionen för matematiska vetenskaper, Algebra och geometri (GU)


Algebra och geometri

Chalmers infrastruktur