CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Electronic and excitonic properties of two-dimensional and bulk InN crystals

D. Liang ; R. G. Quhe ; Y. J. Chen ; L. Y. Wu ; Q. Wang ; P. F. Guan ; Shumin Wang (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; P. F. Lu
Rsc Advances (2046-2069). Vol. 7 (2017), 67, p. 42455-42461.
[Artikel, refereegranskad vetenskaplig]

Motivated by potential extensive applications in nanoelectronics devices of III-Vmaterials, we calculate the structural and optoelectronic properties of two-dimensional (2D) InN as well as its three-dimensional (3D) counterparts by using density functional theory (DFT). Compared with the 3D form, the In-N bonding in the 2D InN layer is stronger in terms of the shorter bond length, and the formation of the 2D one is higher in terms of the lower cohesive energy. The bandgap of monolayer InN is 0.31 eV at PBE level and 2.02 eV at GW(0) level. By many-body GW(0) and BSE within RPA calculations, monolayer InN presents an exciton binding energy of 0.12 eV. The fundamental bandgap increases along with layer reduction and is converted from direct (0.7-0.9 eV) in bulk InN to indirect (2.02 eV) in monolayer InN. Under biaxial compressive strain, the bandgap of 2D-InN can be further tuned from indirect to direct.

Nyckelord: III-V Nitrides, Generalized Gradient Approximation, Augmented-Wave, Method, Fundamental-Band Gap, Excitations, Energy, Films

Denna post skapades 2017-09-27. Senast ändrad 2017-10-04.
CPL Pubid: 252082


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik


Elektroteknik och elektronik

Chalmers infrastruktur