CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Pedestrian tracking using Velodyne data-Stochastic optimization for extended object tracking

Karl Granström (Institutionen för signaler och system, Signalbehandling) ; S. Renter ; M. Fatemi ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling)
28th IEEE Intelligent Vehicles Symposium, IV 2017, Redondo Beach, United States, 11-14 June 2017 p. 39-46. (2017)
[Konferensbidrag, refereegranskat]

Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.

Denna post skapades 2017-09-12.
CPL Pubid: 251837


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)



Chalmers infrastruktur