CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quantized Precoding for Massive MU-MIMO

Sven Jacobsson (Institutionen för signaler och system, Kommunikationssystem) ; Giuseppe Durisi (Institutionen för signaler och system, Kommunikationssystem) ; Mikael Coldrey ; Tom Goldstein ; Christoph Studer
IEEE Transactions on Communications (0090-6778). (2017)
[Artikel, refereegranskad vetenskaplig]

Massive multiuser (MU) multiple-input multiple-output (MIMO) is foreseen to be one of the key technologies in fifth-generation wireless communication systems. In this paper, we investigate the problem of downlink precoding for a narrowband massive MU-MIMO system with low-resolution digital-to-analog converters (DACs) at the base station (BS). We analyze the performance of linear precoders, such as maximal-ratio transmission and zero-forcing, subject to coarse quantization. Using Bussgang’s theorem, we derive a closed-form approximation on the rate achievable under such coarse quantization. Our results reveal that the performance attainable with infinite-resolution DACs can be approached using DACs having only 3 to 4 bits of resolution, depending on the number of BS antennas and the number of user equipments (UEs). For the case of 1-bit DACs, we also propose novel nonlinear precoding algorithms that significantly outperform linear precoders at the cost of an increased computational complexity. Specifically, we show that nonlinear precoding incurs only a 3 dB penalty compared to the infinite-resolution case for an uncoded bit error rate of 10−3, in a system with 128 BS antennas that uses 1-bit DACs and serves 16 single-antenna UEs. In contrast, the penalty for linear precoders is about 8dB.



Denna post skapades 2017-09-06. Senast ändrad 2017-09-06.
CPL Pubid: 251739

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)


Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)

Ämnesområden

Kommunikationssystem

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)