CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A spin integral equation for electromagnetic and acoustic scattering

Andreas Rosén (Institutionen för matematiska vetenskaper)
Applicable Analysis (0003-6811). Vol. 96 (2017), 13, p. 2250-2266.
[Artikel, refereegranskad vetenskaplig]

We present a new integral equation for solving the Maxwell scattering problem against a perfect conductor. The very same algorithm also applies to sound-soft as well as sound-hard Helmholtz scattering, and in fact the latter two can be solved in parallel in three dimensions. Our integral equation does not break down at interior spurious resonances, and uses spaces of functions without any algebraic or differential constraints. The operator to invert at the boundary involves a singular integral operator closely related to the three-dimensional Cauchy singular integral, and is bounded on natural function spaces and depend analytically on the wave number. Our operators act on functions with pairs of complex two-by-two matrices as values, using a spin representation of the fields.

Nyckelord: Maxwell scattering, integral equation, spurious resonances, 45E05, 78M15, 15A66



Denna post skapades 2017-09-06.
CPL Pubid: 251713

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur