CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines

Pramod Bangalore (Institutionen för energi och miljö, Elteknik ; Svenskt VindkraftsTekniskt Centrum (SWPTC)) ; Michael Patriksson (Institutionen för matematiska vetenskaper ; Svenskt VindkraftsTekniskt Centrum (SWPTC))
Renewable Energy (0960-1481). Vol. 115 (2018), p. 521-532.
[Artikel, refereegranskad vetenskaplig]

Wind turbines are, generally, placed at remote locations and are subject to harsh environmental conditions throughout their lifetimes. Consequently, major failures in wind turbines are expensive to repair and cause losses of revenue due to long down times. Asset management using optimal maintenance strategies can aid in improving the reliability and the availability of wind turbines, thereby making them more competitive. Various mathematical optimization models for maintenance scheduling have been developed for application with wind turbines. Typically, these models provide either an age based or a condition based preventive maintenance schedule. This paper proposes a wind turbine maintenance management framework which utilizes operation and maintenance data from different sources to combine the benefits of age based and condition based maintenance scheduling. A mathematical model called Preventive Maintenance Scheduling Problem with Interval Costs (PMSPIC) is presented with modification for the maintenance optimization considering both age based and condition based failure rate models. The application of the maintenance management framework is demonstrated with case studies which illustrate the advantage of the proposed approach.

Nyckelord: Artificial neural network (ANN); Condition monitoring system (CMS); Maintenance scheduling; mathematical optimization model; Wind turbine; Supervisory control and data acquisition (SCADA)

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-09-05. Senast ändrad 2017-11-14.
CPL Pubid: 251647


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Elteknik (2005-2017)
Svenskt VindkraftsTekniskt Centrum (SWPTC)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur