CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Self-intersection of foliation cycles on complex manifolds

Lucas Kaufmann Sacchetto (Institutionen för matematiska vetenskaper, Algebra och geometri)
International Journal of Mathematics (0129-167X). Vol. 28 (2017), 8, p. Art no 1750054.
[Artikel, refereegranskad vetenskaplig]

Let X be a compact Kahler manifold and let T be a foliation cycle directed by a transversely Lipschitz lamination on X. We prove that the self-intersection of the cohomology class of T vanishes as long as T does not contain currents of integration along compact manifolds. As a consequence, we prove that transversely Lipschitz laminations of low codimension in certain manifolds, e.g. projective spaces, do not carry any foliation cycles except those given by integration along compact leaves.

Nyckelord: Foliation cycle, lamination, holomorphic foliation, transverse measure, currents, laminations, G,UMR CNRS 7586, F-75005 Paris, France., [Kaufmann, Lucas] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden., [Kaufmann, Lucas] Univ Gothenburg, SE-41296 Gothenburg, Sweden., Mathematics



Denna post skapades 2017-08-30.
CPL Pubid: 251531

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Algebra och geometriInstitutionen för matematiska vetenskaper, Algebra och geometri (GU)

Ämnesområden

Matematik

Chalmers infrastruktur