CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media

M. A. Khalily ; G. Bakan ; Betül Kücüköz (Institutionen för kemi och kemiteknik, Fysikalisk kemi) ; A. E. Topal ; A. Karatay ; H. G. Yaglioglu ; A. Dana ; M. O. Guler
ACS Nano (1936-0851). Vol. 11 (2017), 7, p. 6881-6892.
[Artikel, refereegranskad vetenskaplig]

Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack pi-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type beta-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A D-A unit cells having an association constant (K-A) of 5.18 x 10(5) M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.

Nyckelord: nanowires, self-assembly, coassembly, supramolecular, peptide chromophore, conductivity

Denna post skapades 2017-08-30.
CPL Pubid: 251530


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi och kemiteknik, Fysikalisk kemi



Chalmers infrastruktur