CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

PrivatePool: Privacy-Preserving Ridesharing

Per A. Hallgren (Institutionen för Data- och informationsteknik, Informationssäkerhet (Chalmers)) ; Claudio Orlandi ; Andrei Sabelfeld (Institutionen för Data- och informationsteknik, Informationssäkerhet (Chalmers))
30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, United States, 21-25 August 2017 (1063-6900). p. 276-291. (2017)
[Konferensbidrag, refereegranskat]

Location-based services have seen tremendous developments over the recent years. These services have revolutionized transportation business, as witnessed by the success of Uber, Lyft, BlaBlaCar, and the like. Yet from the privacy point of view, the state of the art leaves much to be desired. The location of the user is typically shared with the service, opening up for privacy abuse, as in some recently publicized cases. This paper proposes PrivatePool, a model for privacy-preserving ridesharing. We develop secure multi-party computation techniques for endpoint and trajectory matching that allow dispensing with trust to third parties. At the same time, the users learn of a ride segment they can share and nothing else about other users’ location. We establish formal privacy guarantees and investigate how different riding patterns affect the privacy, utility, and performance tradeoffs between approaches based on the proximity of endpoints vs. proximity of trajectories.

Nyckelord: Location privacy, Privacy-enhancing technologies

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-08-16. Senast ändrad 2017-12-14.
CPL Pubid: 251212


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för Data- och informationsteknik, Informationssäkerhet (Chalmers)


Informations- och kommunikationsteknik
Data- och informationsvetenskap

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Robust location privacy