CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The influence of cation ordering, oxygen vacancy distribution and proton siting on observed properties in ceramic electrolytes: the case of scandium substituted barium titanate

Nico Torino (Institutionen för kemi och kemiteknik, Oorganisk miljökemi) ; Paul Henry (Institutionen för kemi och kemiteknik, Oorganisk miljökemi) ; Christopher S Knee (Institutionen för kemi och kemiteknik, Oorganisk miljökemi) ; T. S. Bjorheim ; Seikh Rahman (Institutionen för kemi och kemiteknik, Oorganisk miljökemi) ; E. Suard ; C. Giacobbe ; Sten G. Eriksson (Institutionen för kemi och kemiteknik, Oorganisk miljökemi)
Dalton Transactions (1477-9226). Vol. 46 (2017), 26, p. 8387-8398.
[Artikel, refereegranskad vetenskaplig]

The origin of the 2-order of magnitude difference in the proton conductivity of the hydrated forms of hexagonal and cubic oxygen deficient BaScxTi1-xO3-delta (x = 0.2 and x = 0.7) was probed using a combination of neutron diffraction and density functional theory techniques to support published X-ray diffraction, conductivity, thermogravimetric and differential scanning calorimetry studies. Cation ordering is found in the 6H structure type (space group P6(3)/mmc) adopted by BaSc0.2Ti0.8O3-delta with scandium preferentially substituting in the vertex sharing octahedra (2a crystallographic site) and avoiding the facesharing octahedra (4f site). This is coupled with oxygen vacancy ordering in the central plane of the facesharing octahedra (O1 site). In BaSc0.7Ti0.3O3-delta a simple cubic perovskite (space group Pm3m) best represents the average structure from Rietveld analysis with no evidence of either cation ordering or oxygen vacancy ordering. Significant diffuse scattering is observed, indicative of local order. Hydration in both cases leads to complete filling of the available oxygen vacancies and permits definition of the proton sites. We suggest that the more localised nature of the proton sites in the 6H structure is responsible for the significantly lower proton conduction observed in the literature. Within the 6H structure type final model, proton diffusion requires a 3-step process via higher energy proton sites that are unoccupied at room temperature and is also likely to be anisotropic whereas the highly disordered cubic perovskite proton position allows 3-dimensional diffusion by well-described modes. Finally, we propose how this knowledge can be used to further materials design for ceramic electrolytes for proton conducting fuel cells.

Denna post skapades 2017-08-15. Senast ändrad 2017-08-15.
CPL Pubid: 251175


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi och kemiteknik, Oorganisk miljökemi


Oorganisk kemi

Chalmers infrastruktur