CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

High-T-c SQUID biomagnetometers

M. I. Faley ; J. Dammers ; Y. V. Maslennikov ; J. F. Schneiderman ; Dag Winkler (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; V. P. Koshelets ; N. J. Shah ; R. E. Dunin-Borkowski
Superconductors Science and Technology (0953-2048). Vol. 30 (2017), 8,
[Artikel, refereegranskad vetenskaplig]

In this paper, we review the preparation technology, integration in measurement systems and tests of high-T-c superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Julich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-T-c direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-T-c biomagnetic systems. We conclude by outlining future challenges.

Nyckelord: epitaxial heterostructures, high-T-c Josephson junctions, SQUIDs, biomagnetic measurement systems, magnetocardiography, magnetoencephalography, magnetic nanoparticles

Denna post skapades 2017-08-15. Senast ändrad 2017-08-15.
CPL Pubid: 251171


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik



Chalmers infrastruktur