CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Large Deviations for Gibbs Measures with Singular Hamiltonians and Emergence of Kahler-Einstein Metrics

Robert Berman (Institutionen för matematiska vetenskaper)
Communications in Mathematical Physics (0010-3616). Vol. 354 (2017), 3, p. 1133-1172.
[Artikel, refereegranskad vetenskaplig]

In the present paper and the companion paper (Berman, Kahler-Einstein metrics, canonical random point processes and birational geometry. arXiv:1307.3634, 2015) a probabilistic (statistical-mechanical) approach to the construction of canonical metrics on complex algebraic varieties X is introduced by sampling "temperature deformed" determinantal point processes. The main new ingredient is a large deviation principle for Gibbs measures with singular Hamiltonians, which is proved in the present paper. As an application we show that the unique Kahler-Einstein metric with negative Ricci curvature on a canonically polarized algebraic manifold X emerges in the many particle limit of the canonical point processes on X. In the companion paper (Berman in 2015) the extension to algebraic varieties X with positive Kodaira dimension is given and a conjectural picture relating negative temperature states to the existence problem for Kahler-Einstein metrics with positive Ricci curvature is developed.

Denna post skapades 2017-08-15. Senast ändrad 2017-08-15.
CPL Pubid: 251159


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur