CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing

M. R. Dizaji ; Clemens Krückel (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Attila Fülöp (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Peter Andrekson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Victor Torres Company (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; L. R. Chen
Optics Express (1094-4087). Vol. 25 (2017), 11, p. 12100-12108.
[Artikel, refereegranskad vetenskaplig]

Silicon nitride (SixNy) waveguides constitute a technology platform to realize optical signal processing based on the nonlinear Kerr effect. Varying the stoichiometry of the core (i. e., x and y in silicon nitride) provides an additional degree of freedom for engineering the waveguide properties, such as nonlinear Kerr parameter and dispersion. We demonstrate low-stress high-confinement silicon-rich nitride waveguides with flat and anomalous dispersion over the entire C and L optical wavelength transmission bands for optical signal processing based on cross-phase modulation. The waveguides do not show any nonlinear loss for a measured optical input intensity of up to 1.5 x 109 W/cm(2). In particular, we achieve wavelength conversion of 10 Gb/s signals across the C band; XPM broadening is also observed in the O band. In addition, we highlight the use of SixNy waveguides for nonlinear microwave photonics. Specifically, we demonstrate radio-frequency spectral monitoring of optical signals with a bandwidth of hundreds of gigahertz.

Nyckelord: Cross-Phase Modulation, Optical Wavelength Conversion, Radiofrequency, Spectrum Analyzer, 640 GB/S, Photonics, Fiber, Nanowaveguides, Amplifier, Nanowire

Denna post skapades 2017-08-10.
CPL Pubid: 251025


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik



Chalmers infrastruktur