CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optical bandgap engineering in nonlinear silicon nitride waveguides

Clemens Krückel (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Attila Fülöp (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Zhichao Ye (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Peter Andrekson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Victor Torres Company (Institutionen för mikroteknologi och nanovetenskap, Fotonik)
Optics Express (1094-4087). Vol. 25 (2017), 13, p. 15370-15380.
[Artikel, refereegranskad vetenskaplig]

Silicon nitride is a well-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect.

Nyckelord: CMOS-Compatible Platform, Supercontinuum Generation, Wavelength, Conversion, 2-Photon Absorption, Frequency Combs, Rich Nitride, Microresonator, Deposition, Photonics, Resonators



Denna post skapades 2017-08-10. Senast ändrad 2017-08-21.
CPL Pubid: 251014

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik

Ämnesområden

Optik

Chalmers infrastruktur