CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Classification complexity in myoelectric pattern recognition

Niclas Nilsson (Institutionen för elektroteknik, Medicinska signaler och system) ; Bo Håkansson (Institutionen för elektroteknik, Medicinska signaler och system) ; Max Jair Ortiz-Catalan (Institutionen för elektroteknik, Medicinska signaler och system)
Journal of NeuroEngineering and Rehabilitation Vol. 14 (2017), 1, p. Article no. 68 .
[Artikel, refereegranskad vetenskaplig]

Background: Limb prosthetics, exoskeletons, and neurorehabilitation devices can be intuitively controlled using myoelectric pattern recognition (MPR) to decode the subject's intended movement. In conventional MPR, descriptive electromyography (EMG) features representing the intended movement are fed into a classification algorithm. The separability of the different movements in the feature space significantly affects the classification complexity. Classification complexity estimating algorithms (CCEAs) were studied in this work in order to improve feature selection, predict MPR performance, and inform on faulty data acquisition. Methods: CCEAs such as nearest neighbor separability (NNS), purity, repeatability index (RI), and separability index (SI) were evaluated based on their correlation with classification accuracy, as well as on their suitability to produce highly performing EMG feature sets. SI was evaluated using Mahalanobis distance, Bhattacharyya distance, Hellinger distance, Kullback-Leibler divergence, and a modified version of Mahalanobis distance. Three commonly used classifiers in MPR were used to compute classification accuracy (linear discriminant analysis (LDA), multi-layer perceptron (MLP), and support vector machine (SVM)). The algorithms and analytic graphical user interfaces produced in this work are freely available in BioPatRec. Results: NNS and SI were found to be highly correlated with classification accuracy (correlations up to 0.98 for both algorithms) and capable of yielding highly descriptive feature sets. Additionally, the experiments revealed how the level of correlation between the inputs of the classifiers influences classification accuracy, and emphasizes the classifiers' sensitivity to such redundancy. Conclusions: This study deepens the understanding of the classification complexity in prediction of motor volition based on myoelectric information. It also provides researchers with tools to analyze myoelectric recordings in order to improve classification performance.

Nyckelord: Classification complexity, Electromyography, Myoelectric pattern recognition, Prosthesis control

Denna post skapades 2017-08-03. Senast ändrad 2017-08-11.
CPL Pubid: 250892


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för elektroteknik, Medicinska signaler och system



Chalmers infrastruktur