CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the spectra of real and complex lamé operators

W.A. Haese-Hill ; Martin A. Hallnäs (Institutionen för matematiska vetenskaper, Analys och sannolikhetsteori) ; A.P. Veselov
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) Vol. 13 (2017), p. Article no. 049 .
[Artikel, refereegranskad vetenskaplig]

We study Lamé operators of the form L = − dx/dx 2 2 + m(m + 1)ω 2 ℘(ωx + z 0 ), with m ∈ N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z 0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than m gaps. In the first part of the paper, we prove that the opened gaps are precisely the first m ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m = 1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m = 2 case, paying particular attention to the rhombic lattices.

Nyckelord: Finite-gap operators, Lamé operators, Non-self-adjoint operators, Spectral theory



Denna post skapades 2017-07-27. Senast ändrad 2017-08-16.
CPL Pubid: 250814

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Analys och sannolikhetsteoriInstitutionen för matematiska vetenskaper, Analys och sannolikhetsteori (GU)

Ämnesområden

Matematik

Chalmers infrastruktur