CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

GFRP connectors in textile reinforced concrete sandwich elements

Natalie Williams Portal (Institutionen för bygg- och miljöteknik, Konstruktionsteknik) ; Kamyab Zandi Hanjari (Institutionen för bygg- och miljöteknik, Konstruktionsteknik) ; Katarina Malaga ; Lech Wlasak
IABSE Congress Stockholm, 2016: Challenges in Design and Construction of an Innovative and Sustainable Built Environment p. 1331-1338. (2016)
[Konferensbidrag, refereegranskat]

In this paper, both experimental and numerical methods are presented to gain an understanding of the structural behaviour related to a TRC sandwich panel with a glass fibre reinforced polymer (GFRP) plate connection system. Double shear tests were conducted on component-scale sandwich panels to characterize the available shear capacity provided by the connectors and panel configuration. Three-dimension (3D) non-linear Finite Element Analysis (NLFEA) was applied to develop a model for the design of TRC sandwich panels while focusing on the connectors. The experimental outcome of the shear tests was applied to validate the corresponding numerical model developed in this work. The need for further modifications to the design of the shear connectors or other parameters such as panel thickness can be established accordingly. This developed FE model can essentially be applied as a design tool to further predict the structural behaviour of the full-scale sandwich elements.

Nyckelord: sandwich elements, textile reinforced concrete (TRC), glass fibre reinforced polymer (GFRP), shear connectors, experiments, finite element analysis (FEA)



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-06-23.
CPL Pubid: 250081

 

Institutioner (Chalmers)

Institutionen för bygg- och miljöteknik, Konstruktionsteknik (2005-2017)

Ämnesområden

Building Futures
Hållbar utveckling
Infrastrukturteknik

Chalmers infrastruktur