CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Positive Herz-Schur multipliers and approximation properties of crossed products

Andrew McKee ; Adam Skalski ; Ivan G. Todorov ; Lyudmila Turowska (Institutionen för matematiska vetenskaper)
Mathematical proceedings of the Cambridge Philosophical Society (0305-0041). (2017)
[Artikel, refereegranskad vetenskaplig]

For a C*-algebra A and a set X we give a Stinespring-type characterisation of the completely positive Schur A -multipliers on K(ℓ^2(X))⊗A . We then relate them to completely positive Herz-Schur multipliers on C ∗ -algebraic crossed products of the form A⋊ α,r G , with G a discrete group, whose various versions were considered earlier by Anantharaman-Delaroche, Bedos and Conti, and Dong and Ruan. The latter maps are shown to implement approximation properties, such as nuclearity or the Haagerup property, for A⋊ α,r G .


Published online



Denna post skapades 2017-06-19. Senast ändrad 2017-08-15.
CPL Pubid: 249958

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur