CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Functional regression-based fluid permeability prediction in monodisperse sphere packings from isotropic two-point correlation functions

Magnus Röding (SuMo Biomaterials) ; Peter Svensson ; Niklas Lorén (Institutionen för fysik, Eva Olsson Group (Chalmers) ; SuMo Biomaterials)
Computational Materials Science (09270256). Vol. 134 (2017), p. 126-131.
[Artikel, refereegranskad vetenskaplig]

We study fluid permeability in random sphere packings consisting of impermeable monodisperse hard spheres. Several different pseudo-potential models are used to obtain varying degrees of microstructural heterogeneity. Systematically varying solid volume fraction and degree of heterogeneity, virtual screening of more than 10,000 material structures is performed, simulating fluid flow using a lattice Boltzmann framework and computing the permeability. We develop a well-performing functional regression model for permeability prediction based on using isotropic two-point correlation functions as microstructural descriptors. The performance is good over a large range of solid volume fractions and degrees of heterogeneity, and to our knowledge this is the first attempt at using two-point correlation functions as functional predictors in a nonparametric statistics/machine learning context for permeability prediction.

Nyckelord: Correlation functions; Functional regression; Granular materials; Permeability; Sphere packings

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-06-15. Senast ändrad 2017-07-04.
CPL Pubid: 249891


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

SuMo Biomaterials
Institutionen för fysik, Eva Olsson Group (Chalmers)


Annan fysik

Chalmers infrastruktur