CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Poisson Multi-Bernoulli Mapping Using Gibbs Sampling

Maryam Fatemi (Institutionen för signaler och system, Signalbehandling) ; Karl Granström (Institutionen för signaler och system, Signalbehandling) ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; F. J. R. Ruiz ; Lars Hammarstrand (Institutionen för signaler och system, Signalbehandling)
IEEE Transactions on Signal Processing (1053-587X). Vol. 65 (2017), 11, p. 2814-2827.
[Artikel, refereegranskad vetenskaplig]

This paper addresses the mapping problem. Using a conjugate prior form, we derive the exact theoretical batch multiobject posterior density of the map given a set of measurements. The landmarks in the map are modeled as extended objects, and the measurements are described as a Poisson process, conditioned on the map. We use a Poisson process prior on the map and prove that the posterior distribution is a hybrid Poisson, multi-Bernoulli mixture distribution. We devise a Gibbs sampling algorithm to sample from the batch multiobject posterior. The proposed method can handle uncertainties in the data associations and the cardinality of the set of landmarks, and is parallelizable, making it suitable for large-scale problems. The performance of the proposed method is evaluated on synthetic data and is shown to outperform a state-of-the-art method.

Nyckelord: Statistical mapping, extended object, Monte Carlo methods, inference algorithms, sampling methods

Denna post skapades 2017-06-07. Senast ändrad 2017-06-08.
CPL Pubid: 249608


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)



Chalmers infrastruktur