CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A numerical framework for bubble transport in a subcooled fluid flow

Klas Jareteg (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Srdjan Sasic (Institutionen för tillämpad mekanik) ; Paolo Vinai (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)) ; Christophe Demazière (Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers))
Journal of Computational Physics (0021-9991). Vol. 345 (2017), p. 373-403.
[Artikel, refereegranskad vetenskaplig]

In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor–liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian–Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.

Nyckelord: Direct quadrature method of moments, Two-fluid, CFD, PBE, Condensation



Denna post skapades 2017-06-02.
CPL Pubid: 249564

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Subatomär fysik och plasmafysik (Chalmers)
Institutionen för tillämpad mekanik (1900-2017)

Ämnesområden

Strömningsmekanik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)