CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Parametric study of the dynamic motions and mechanical characteristics of power cables for wave energy converters

Shun-Han Yang ( Institutionen för mekanik och maritima vetenskaper, Marin teknik) ; Jonas Ringsberg ( Institutionen för mekanik och maritima vetenskaper, Marin teknik) ; Erland Johnson
Journal of Marine Science and Technology (0948-4280). Vol. X (2017), Y, p. 1-20.
[Artikel, refereegranskad vetenskaplig]

A case study of a point-absorber wave energy converter (WEC) system is presented. The WEC system forms an array, with several WECs located around a central hub to which they are each connected by a short, free-hanging power cable. The objective of the study is to analyse the dynamic characteristics and estimate the fatigue life of the power cable which is not yet in use or available on the commercial market. Hence, a novel approach is adopted in the study considering that the power cable’s length is restricted by several factors (e.g., the clearances between the service vessel and seabed and the cable), and the cable is subject to motion and loading from the WEC and to environmental loads from waves and currents (i.e., dynamic cable). The power cable’s characteristics are assessed using a numerical model subjected to a parametric analysis, in which the environmental parameters and the cable’s design parameters are varied. The results of the numerical simulations are compared and discussed regarding the responses of the power cables, including dynamic motion, curvature, cross-sectional forces, and accumulated fatigue damage. The effects of environmental conditions on the long-term mechanical life spans of the power cables are also investigated. Important cable design parameters that result in a long power cable (fatigue) service life are identified, and the cable service life is predicted. This study contributes a methodology for the first-principle design of WEC cables that enables the prediction of cable fatigue life by considering environmental conditions and variations in cable design parameters.

Nyckelord: Cable dynamics, Fatigue, Power cable, Wave energy converter

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-05-24. Senast ändrad 2017-06-28.
CPL Pubid: 249481