CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Generalized trigonometric solutions of the classical Yang-Baxter equation

Alexander Stolin (Institutionen för matematik)
Group22: Proceedings of the XXII International Colloquium in Group Theoretical Methods in Physics p. 438-442. (1998)
[Konferensbidrag, refereegranskat]

We consider skew-symmetric solutions of the CYBE of the form ut/upsilon-u + p(u, upsilon), where t epsilon g(x2) is the Casimir element and p(u,upsilon) is a polynomial with coefficients in g(x2) If p(u,upsilon) = const then substituting upsilon/u= e(x) we obtain a trigonometric solution t/1-e(1) + Const in the sense of Ref. 1. We prove that there exists a gauge transformation reducing the polynomial part p(u,upsilon) to a polynomial of degree less than or equal to 1 in u and upsilon. A non-trivial example of a generalized trigonometric solution is constructed.

Denna post skapades 2017-05-23.
CPL Pubid: 249464


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)



Chalmers infrastruktur