CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Shot noise in a harmonically driven ballistic graphene transistor

Yevgeniy Korniyenko (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; O. Shevtsov ; Tomas Löfwander (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Physical Review B - Condensed Matter and Materials Physics (1098-0121). Vol. 95 (2017), 16,
[Artikel, refereegranskad vetenskaplig]

We study time-dependent electron transport and quantum noise in a ballistic graphene field effect transistor driven by an ac gate potential. The nonlinear response to the ac signal is computed through Floquet theory for scattering states and Landauer-Büttiker theory for charge current and its fluctuations. Photon-assisted excitation of a quasibound state in the top-gate barrier leads to resonances in transmission that strongly influence the noise properties. For strong doping of graphene under source and drain contacts, when electrons are transmitted through the channel via evanescent waves, the resonance leads to a substantial suppression of noise. The Fano factor is then reduced well below the pseudodiffusive value, F<1/3, also for strong ac drive. The good signal-to-noise ratio (small Fano factor) on resonance suggests that the device is a good candidate for high-frequency (THz) radiation detection. We show analytically that Klein tunneling (total suppression of back-reflection) persists for perpendicular incidence also when the barrier is driven harmonically. Although the transmission is inelastic and distributed among sideband energies, a sum rule leads to total suppression of shot noise.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-05-17. Senast ändrad 2017-06-21.
CPL Pubid: 249367

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Ämnesområden

Nanovetenskap och nanoteknik
Mesoskopisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Quantum theory of time-dependent transport in graphene