CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink

Duy Nguyen (Institutionen för kemi och kemiteknik, Kemisk apparatteknik) ; Daniel Hägg (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Alma Forsman ; Josefine Ekholm ; P. Nimkingratana ; Camilla Brantsing ; Theodoros Kalogeropoulos (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Samantha Zaunz (Institutionen för kemi och kemiteknik) ; Sebastian Concaro ; M. Brittberg ; Anders Lindahl ; Paul Gatenholm (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Annika Enejder (Institutionen för biologi och bioteknik, Kemisk biologi) ; Stina Simonsson
Scientific Reports (2045-2322). Vol. 7 (2017),
[Artikel, refereegranskad vetenskaplig]

Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.

Nyckelord: Pluripotent Stem-Cells, Autologous Chondrocyte Implantation, Human, Articular Chondrocytes, Chondrogenic Differentiation, Self-Renewal, Hydrogel, System, Bone, Knee



Denna post skapades 2017-05-05. Senast ändrad 2017-06-27.
CPL Pubid: 249139

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi och kemiteknik, Kemisk apparatteknik
Institutionen för kemi och kemiteknik, Polymerteknologi
Institutionen för biomedicin, avdelningen för klinisk kemi och transfusionsmedicin (GU)
Institutionen för kemi och kemiteknik
Institutionen för biologi och bioteknik, Kemisk biologi

Ämnesområden

Biomaterialvetenskap

Chalmers infrastruktur