CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics

O. Cometto ; Majid Kabiri Samani (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; B. Liu ; S. X. Sun ; S. H. Tsang ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap ; Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ; Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; K. Zhou ; E. H. T. Teo
Acs Applied Materials & Interfaces (1944-8244). Vol. 9 (2017), 8, p. 7456-7464.
[Artikel, refereegranskad vetenskaplig]

High anisotropic thermal materials, which allow heat to dissipate in a preferential direction, are of interest as a prospective material for electronics as an effective thermal management solution for hot spots. However, due to their preferential heat propagation in the in-plane direction, the heat spreads laterally instead of vertically. This limitation makes these materials ineffective as the density of hot spots increases. Here, we produce a new dielectric thin film material at room temperature, named vertically ordered nanocrystalline h-BN (voBN). It is produced such that its preferential thermally conductive direction is aligned in the vertical axis, which facilitates direct thermal extraction, thereby addressing the increasing challenge of thermal crosstalk. The uniqueness of voBN comes from its h-BN nanocrystals where all their basal planes are aligned in the direction normal to the substrate plane. Using the 3 omega method, we show that voBN exhibits high anisotropic thermal conductivity (TC) with a 16-fold difference between through-film TC and in-plane TC (respectively 4.26 and 0.26 W.m(-1).K-1). Molecular dynamics simulations also concurred with the experimental data, showing that the origin of this anisotropic behavior is due to the nature of voBN's plane ordering. While the consistent vertical ordering provides an uninterrupted and preferred propagation path for phonons in the through-film direction, discontinuity in the lateral direction leads to a reduced in-plane TC. In addition, we also use COMSOL to simulate how the dielectric and thermal properties of voBN enable an increase in hot spot density up to 295% compared with SiO2, without any temperature increase.

Nyckelord: Thermal conductivity, 3 omega, Molecular dynamics, COMSOL, Boron nitride, boron-nitride nanotubes, pulsed-laser deposition, thermoelectric, properties, polyimide films, conductivity, diffusivity, carbon, Science & Technology - Other Topics, Materials Science, en g, 1994, journal of heat transfer-transactions of the asme, v116, p325, ick r, 1966, physical review, v146, p543, opra ng, 1995, science, v269, p966



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-05-03.
CPL Pubid: 249102

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)