CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Enhanced growth of neural networks on cellulose-derived carbon nanofibrous scaffolds

Volodymyr Kuzmenko (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; Theodoros Kalogeropoulos (Institutionen för kemi och kemiteknik) ; Johannes Thunberg (Institutionen för kemi och kemiteknik, Organisk kemi) ; Sara Johannesson (Institutionen för kemi och kemiteknik) ; Daniel Hägg (Institutionen för kemi och kemiteknik, Polymerteknologi) ; Peter Enoksson (Institutionen för mikroteknologi och nanovetenskap, Elektronikmaterial och system ) ; Paul Gatenholm (Institutionen för kemi och kemiteknik, Polymerteknologi)
Annual World Conference on Carbon – CARBON 2015 (2015)
[Konferensbidrag, refereegranskat]

Tissue engineering is a prospective method for solving the problem of recovery from neurodegenerative disorders as it helps to grow healthy neural tissue using supportive scaffolds. Biocompatible scaffolds with mechanical stability, appropriate topography and electrical conductivity previously demonstrated efficient results in neural tissue engineering applications. In this study, we present sustainable cellulose-derived carbon nanofibrous (CNF) biomaterial that can be used either as a scaffold for the regeneration of neural tissue or as a drug screening model. This scaffold material was characterized with excellent biocompatibility (95.6% cell viability), nanosized topography (fiber diameter in the range of 50-250 nm) and electrical conductivity (10*7 times higher value than the one of an unmodified cellulosic precursor) to support adhesion, growth and differentiation of SH-SY5Y neuroblastoma cells. The results showed that the formation of a neural network occurred within 10 days of differentiation, which is a good duration for SH-SY5Y neuroblastoma cells. We can conclude that topography and electrical conductivity of the CNF material played a major role in its positive influence on the development of neural tissue. CNF nanotopography resembles the one of an extracellular matrix of neural tissue, while electrical conductivity allows utilization of electrochemical signals for information transmission between neurons.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-04-25.
CPL Pubid: 248958