CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Single particle raster image analysis of diffusion

Marco Longfils (Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik) ; Erich Schuster (SuMo Biomaterials) ; Niklas Lorén (Institutionen för fysik, Eva Olsson Group (Chalmers)) ; Aila Särkkä (Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik) ; Mats Rudemo (Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik)
Journal of Microscopy (0022-2720). Vol. 266 (2016), 1, p. 3-14.
[Artikel, refereegranskad vetenskaplig]

As a complement to the standard RICS method of analysing Raster Image Correlation Spectroscopy images with estimation of the image correlation function, we introduce the method SPRIA, Single Particle Raster Image Analysis. Here, we start by identifying individual particles and estimate the diffusion coefficient for each particle by a maximum likelihood method. Averaging over the particles gives a diffusion coefficient estimate for the whole image. In examples both with simulated and experimental data, we show that the new method gives accurate estimates. It also gives directly standard error estimates. The method should be possible to extend to study heterogeneous materials and systems of particles with varying diffusion coefficient, as demonstrated in a simple simulation example. A requirement for applying the SPRIA method is that the particle concentration is low enough so that we can identify the individual particles. We also describe a bootstrap method for estimating the standard error of standard RICS.

Nyckelord: Bias correction; bootstrap; confocal laser scanning microscopy; diffusion; fluorescent beads; maximum likelihood



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-04-21.
CPL Pubid: 248929

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Tillämpad matematik och statistikInstitutionen för matematiska vetenskaper, Tillämpad matematik och statistik (GU)
SuMo Biomaterials
Institutionen för fysik, Eva Olsson Group (Chalmers)

Ämnesområden

Materialvetenskap
Matematisk statistik

Chalmers infrastruktur