CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

One Bit is (Not) Enough: An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors

Behrooz Sangchoolie (Institutionen för data- och informationsteknik, Datorteknik (Chalmers)) ; Karthik Pattabiraman ; Johan Karlsson (Institutionen för data- och informationsteknik, Datorteknik (Chalmers))
The 47th IEEE/IFIP International Conference on Dependable Systems and Networks p. 97-108. (2017)
[Konferensbidrag, refereegranskat]

Recent studies have shown that technology and voltage scaling are expected to increase the likelihood that particle-induced soft errors manifest as multiple-bit errors. This raises concerns about the validity of using single bit-flips for assessing the impact of soft errors in fault injection experiments. The goal of this paper is to investigate whether multiple-bit errors could cause a higher percentage of silent data corruptions (SDCs) compared to single-bit errors. Based on 2700 fault injection campaigns with 15 benchmark programs, featuring a total of 27 million experiments, our results show that single-bit errors in most cases yields a higher percentage of SDCs compared to multiple-bit errors. However, in 8% of the campaigns we observed a higher percentage of SDCs for multiple-bit errors. For most of these campaigns, the highest percentage of SDCs was obtained by flipping at most 3 bits. Moreover, we propose three ways of pruning the error space based on the results.

Nyckelord: fault injection, transient hardware faults, single/multiple bit-flip errors, error space pruning



Denna post skapades 2017-04-12. Senast ändrad 2017-11-13.
CPL Pubid: 248841

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för data- och informationsteknik, Datorteknik (Chalmers)

Ämnesområden

Datorteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


On Efficient Measurement of the Impact of Hardware Errors in Computer Systems