CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical Structure of the Hessian of the Lagrange Dual Function for a Class of Convex Problems

Emil Klintberg (Institutionen för signaler och system, Reglerteknik) ; Sébastien Gros (Institutionen för signaler och system, Reglerteknik)
SIAM Journal of Control and Optimization (0363-0129). Vol. 55 (2017), 1, p. 574-593.
[Artikel, refereegranskad vetenskaplig]

This paper considers a structured separable convex optimization problem, motivated by the deployment of model predictive control on multiagent systems that are interacting via nondelayed couplings. We show that the dual decomposition of this problem yields a numerical structure in the Hessian of the dual function. This numerical structure allows for deploying a quasi Newton method in the dual space. For large problems, this approach yields a large reduction of the computational complexity of solving the problem, and for geographically distributed problems a reduction in the communication burden.

Nyckelord: dual decomposition, Newton method, structure exploitation, dual Hessian



Denna post skapades 2017-04-10. Senast ändrad 2017-04-10.
CPL Pubid: 248810

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Reglerteknik (2005-2017)

Ämnesområden

Reglerteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Structure exploiting optimization methods for model predictive control