CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multistatic Bayesian Extended Target Tracking

G. Vivone ; P. Braca ; Karl Granström (Institutionen för signaler och system, Signalbehandling) ; P. Willett
Ieee Transactions on Aerospace and Electronic Systems (0018-9251). Vol. 52 (2016), 6, p. 2626-2643.
[Artikel, refereegranskad vetenskaplig]

To track an extended target presents challenges because the hypothesis of "one target means one detection" is not valid. Several approaches to extended target tracking (ETT) have been found promising, and in particular those involving random matrices have demonstrated their appeal. When targets are extended and the data is multistatic the issues are compounded; the random matrix model has continued appeal and offers a way to avoid enumerative data association. In this paper, a bistatic Bayesian ETT approach integrated into the random matrix framework is proposed. Furthermore, a closed-form solution for fusing multistatic radar system data into the same framework is presented. The proposed approaches are tested on both simulated data and real data.

Nyckelord: probability hypothesis density, random matrices, kalman-filter, phd, filter, objects, model, Engineering, Telecommunications

Denna post skapades 2017-03-31.
CPL Pubid: 248750


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Annan elektroteknik och elektronik

Chalmers infrastruktur