CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Counting rational points on genus one curves

Manh Hung Tran (Institutionen för matematiska vetenskaper, Algebra och geometri)
Gothenburg : Chalmers University of Technology, 2017.

This thesis contains two papers dealing with counting problems for curves of genus
one. We obtain uniform upper bounds for the number of rational points of bounded
height on such curves. The main tools to study these problems are descent and various
refined versions of Heath-Brown’s p-adic determinant method. In the first paper, we
count rational points on smooth plane cubic curves. In the second paper, we count
rational points on non-singular complete intersections of two quadrics. The methods
are different for curves of small height and large height and descent is only used for
curves of small height.

Nyckelord: Diophantine equations, rational points, Elliptic curves, genus, descent, determinant method, cubic and quartic curves

Denna post skapades 2017-03-28. Senast ändrad 2017-04-07.
CPL Pubid: 248698


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Algebra och geometriInstitutionen för matematiska vetenskaper, Algebra och geometri (GU)



Chalmers infrastruktur


Datum: 2017-04-25
Tid: 13:15
Lokal: Pascal, Matematiska vetenskaper, Chalmers tvärgata 3
Opponent: Dr Oscar Marmon, University of Copenhagen, Denmark