CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Understanding Data Analytics Workloads on Intel(R) Xeon Phi(R)

B. Xie ; X. Liu ; Sally A McKee (Institutionen för data- och informationsteknik, Datorteknik (Chalmers)) ; J. Zhan ; Z. Jia ; L. Wang ; L. Zhang
18th IEEE International Conference on High Performance Computing and Communications, 14th IEEE International Conference on Smart City and 2nd IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016, Sydney, Australia, 12-14 December 2016 p. 206-215. (2016)
[Konferensbidrag, refereegranskat]

The Intel® Xeon Phi™ is gaining popularity for high-performance computing (HPC) applications, but the performance of this many-core coprocessor with wide floating point SIMD units has yet to be explored on data analytics workloads. We construct a benchmark suite to explore the Xeon Phi™'s potential for use in data center servers. Our resulting PhiBench consists of eight representative data analytics workloads covering six application domains. These workloads are optimized for Xeon Phi™ and implemented with openMP and Cilk Plus. We run them on real-world datasets and compare their performances for different programming models, input data sizes, and thread counts. Most benefit from the Xeon Phi™'s high computational capacity, delivering speedups by factors of four to almost 29. We further analyze their microarchitecture-level performance characteristics, including vectorization intensities and cache behaviors, and we investigate the impact of affinities and scheduling policies on performance and scalability. Our observations should help other researchers and practitioners to understand and optimize the behaviors of data analytics workloads on the Xeon Phi™.

Nyckelord: Data analytics, Performance characterization, Xeon Phi™



Denna post skapades 2017-03-14. Senast ändrad 2017-07-14.
CPL Pubid: 248543

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för data- och informationsteknik, Datorteknik (Chalmers)

Ämnesområden

Datavetenskap (datalogi)

Chalmers infrastruktur