CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Resonant subgap current transport in Josephson field effect transistor

E. V. Bezuglyi ; E. N. Bratus ; Vitaly Shumeiko (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Physical Review B: covering condensed matter and materials physics (2469-9950). Vol. 95 (2017), 1, p. Article no 014522 .
[Artikel, refereegranskad vetenskaplig]

We study theoretically the current-voltage characteristics (IVCs) of the Josephson field effect transistor - a ballistic SNINS junction with superconducting (S) electrodes confining a planar normal-metal region (N), which is controlled by the gate-induced potential barrier (I). Using the computation technique developed earlier for long single-channel junctions in the coherent multiple Andreev reflection (MAR) regime, we find a significant difference of the subgap current structure compared to the subharmonic gap structure in tunnel junctions and atomic-size point contacts. For long junctions, whose lengths significantly exceed the coherence length, the IVC exhibits current peaks at multiples (harmonics) of the distance ?m between the static Andreev levels eVn=n?m. Moreover, the averaged IVC follows the powerlike behavior rather than the exponential one and has a universal scaling with the junction transparency. This result is qualitatively understood using an analytical approach based on the concept of resonant MAR trajectories. In shorter junctions having lengths comparable to the coherence length, the IVC has an exponential form common for point contacts, however the current structures appear at the subharmonics of the interlevel distance eVn=?m/n rather than the gap subharmonics 2?/n.

Denna post skapades 2017-03-03. Senast ändrad 2017-06-12.
CPL Pubid: 248381


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik



Chalmers infrastruktur