CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Carbon Composites for a High-Energy Lithium–Sulfur Battey with a Glyme-Based Electrolyte

Lorenzo Carbone ; Jing Peng ; Marco Agostini (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Mallory Gobet ; Matthew Devany ; Bruno Scrosati ; Steve Greenbaum ; Jusef Hassoun
ChemElectroChem (21960216). Vol. 4 (2017), 1, p. 209-215.
[Artikel, refereegranskad vetenskaplig]

A comparative study of sulfur composites using carbon of various natures, namely, graphite, mesocarbon microbeads, and multi-walled carbon nanotubes, is performed in lithium battery design and evaluation. Morphological and structural analyses, by means of SEM and XRD, cyclic voltammetry and galvanostatic cycling in lithium cells are employed for characterization of the materials. Tetraethylene glycol dimethyl ether containing lithium trifluoromethansulfonate is considered the preferred electrolyte for performing the electrochemical tests. Prior to use in cells, the electrolyte characteristics in terms of 1H, 7Li, and 19F nuclei self-diffusion coefficients, ionic conductivity, and ionic association degree are studied by combining NMR and impedance spectroscopy. The best lithium–sulfur composite reported herein achieves a capacity higher than 500 mAh g?1 over 140 cycles with no sign of dendrite formation or failure. This performance is considered sufficiently suitable for the development of high-energy lithium batteries, in particular, considering the expected safety of the cells by employing a nonflammable glyme electrolyte instead of a conventional carbonate-based one.

Nyckelord: batteries; carbon; energy storage; lithium; sulfur



Denna post skapades 2017-03-03. Senast ändrad 2017-03-31.
CPL Pubid: 248368

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Kondenserade materiens fysik (Chalmers)

Ämnesområden

Hållbar utveckling
Fysik
Kemi

Chalmers infrastruktur