CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Conductivity in Cuprates Arises from Two Different Sources: One-Electron Exchange and Disproportionation

Sven Larsson (Institutionen för kemi och kemiteknik, Fysikalisk kemi)
Journal of Superconductivity and Novel Magnetism (1557-1939). Vol. 30 (2017), 2, p. 275-285.
[Artikel, refereegranskad vetenskaplig]

Simulation of the resistivity in the normal state of doped La2-x Sr (x) CuO4 has been performed using a hopping model based on Marcus theory. The results are in substantial agreement with experimental results. At oxidative doping, Cu(III) sites are formed and electron mobility possible due to hopping: Cu(III)Cu(II) -> Cu(II)Cu(III) (one-electron exchange). In the underdoped, non-metallic region, the resistivity (rho) decreases from almost insulation at T = 0 to a minimum at about T = 100 K. rho then increases more than linearly with T (similar to T (3/2)) in the region 100 < T < 500 K. A photo-induced metal-metal (MM) charge transfer transition at 2 eV 2Cu(II) + h nu -> Cu(I) + Cu(III) is responsible for the strong absorption in the visible spectrum of La2CuO4. The down-shift of spectral density with doping (x) in La2-x Sr (x) CuO4 depends on the appearance of Cu(III) sites which makes optical as well as thermal one-electron exchange transitions possible with lower energy. Disproportionation occurs spontaneously for x > 0.06, opening up for electron pair formation. Configuration interaction between two-electron states of low chemical potential, but strong vibrational coupling, gives rise to the superconductor and pseudogaps. Data from photo-induced conductivity and absorption spectra are used in the simulation, which gives results in good agreement with experiments. Possible explanations for Raman and MIR absorption suggest themselves.

Nyckelord: Cuprates, Resistivity, Superconductivity (SC), Doping level, Hubbard-U, Pseudogap, Metal-metal charge transfer (CT), Vibronic states, Mobility

Denna post skapades 2017-02-17. Senast ändrad 2017-04-28.
CPL Pubid: 248202


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)