CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films

Simon Isaksson (Institutionen för kemi och kemiteknik ; Institutionen för kemi och kemiteknik, Teknisk ytkemi) ; E. B. Watkins ; K. L. Browning ; T. K. Lind ; M. Cardenas ; Kristina Hedfalk ; Fredrik Höök (Institutionen för fysik, Biologisk fysik (Chalmers)) ; Mats R. Andersson (Institutionen för kemi och kemiteknik, Polymerteknologi)
Nano Letters (1530-6984). Vol. 17 (2017), 1, p. 476-485.
[Artikel, refereegranskad vetenskaplig]

Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic-inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.

Nyckelord: Lipid bilayer, Silica, Membrane protein, Aquaporin, Neutron reflectivity, Liposome, vesicle fusion, membranes, channel, conductance, angstrom, titania, Chemistry, Science & Technology - Other Topics, Materials Science, Physics

Denna post skapades 2017-02-15.
CPL Pubid: 248140


Läs direkt!

Länk till annan sajt (kan kräva inloggning)