CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons

Martin Wersäll (Institutionen för fysik, Bionanofotonik (Chalmers)) ; Jorge Cuadra (Institutionen för fysik, Bionanofotonik (Chalmers)) ; Tomasz Antosiewicz (Institutionen för fysik, Bionanofotonik (Chalmers)) ; S. Balci ; Timur Shegai (Institutionen för fysik, Bionanofotonik (Chalmers))
Nano Letters (1530-6984). Vol. 17 (2017), 1, p. 551-558.
[Artikel, refereegranskad vetenskaplig]

Plasmon-exciton interactions are important for many prominent spectroscopic applications' such as surface enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum:optical effects. studied in solid state and atomic systems previously. plasmonics, Similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles, We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, similar to 20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong Coupling phenomena in plasmonics.

Nyckelord: Strong coupling, Rabi splitting, plasmon-exciton interactions, photoluminescence, plexciton, surface lattice resonances, single quantum-dot, room-temperature, semiconductor microcavities, polariton emission, dynamics, nanoshell, nanostructures, dye, nanocavities, Chemistry, Science & Technology - Other Topics, Materials Science, Physics, ates of america, v112, p12288

Denna post skapades 2017-02-15. Senast ändrad 2017-09-14.
CPL Pubid: 248139


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik, Bionanofotonik (Chalmers)



Chalmers infrastruktur